用全钢化玻璃代替普通真空玻璃结构中的两块普通玻璃即为全钢化真空玻璃。全钢化真空玻璃作为新一代节能玻璃,因具有避免结露、节能绝热、隔声降噪、高强度、抗风压等诸多优势而被广泛应用于建筑领域、家电领域、农业领域和光伏建筑一体化领域。随着节约能耗的呼声日益增长,全钢化真空玻璃的结构与性能受到越来越多的关注。支撑物是全钢化真空玻璃的重要构件,它的设计是生产全钢化真空玻璃的关键。
由于全钢化真空玻璃呈真空状态, 则址下片玻璃受大气压的作用,故支撑物的主要作用就是抵抗大气压,且避免玻璃变形。全钢化真空玻璃中心区域热导由辐射热导、支撑物热导和残余气体热导组成。
(1)在生产王艺和其他构件参数相同时,全钢化真空玻璃导热系数与支撑物的排布方式灰关联度大。推断出支撑物的排布方式对全钢化真空玻璃导热系数的贡献大。因此,在全钢化真空玻璃设计过程中,应尽可能减少单位面积支撑物的数量,有助于大限度地降低玻璃的导热系数。
(2)支撑物材料的导热性与全钢化真空玻璃导热系数的关联度也较大,仅次于排布方式。其他支撑物参数与全钢化真空玻璃导热系数的关联度按大小排序为:支撑物的形状、支撑物的布放间距、支撑物的尺寸。
玻璃幕墙的节能设计并不是简单的1+1=2,而是需要从多方面来考虑,从而达到理想的节能目的。可以从以下四个角度去考虑:
综合传热系数是
现在来让我们走出这个误区,玻璃的传热系数指的是玻璃本身的性能与幕墙这个体系是两个概念。幕墙整体隔热性能由于铝框的传热导致折减,同时由于开启扇周边区域无法完全密闭而存在空气渗透热损失。因此,玻璃的传热系数决定隔热效果的大致范围,而综合考虑的型材传热和空气渗透后的综合传热系数才是作为节能参考依据的设计参数。
考虑好这四点让框架式玻璃幕墙设计更节能
隔热体系要
建筑幕墙应选用隔热性能好的,隐框玻璃幕墙体系是个不错的选择。它不仅完全将隔绝了室外温差,同时避免了铝材传导出的热量损失。但如采用明框体系则应选用具有隔热处理的铝合金型材或采取其它有效的隔热措施,通常采用的是断桥隔热铝型材,或在中空玻璃外侧的扣盖与玻璃内侧的立柱之间增加三元乙丙隔热胶垫来阻隔热传导。
阻隔热传导是关键
热桥是指处在外墙和屋面等围护结构中的钢筋混凝土或金属梁、柱、肋等部位。因这些部位传热能力强,热流较密集,内表面温度较低,故称为热桥。对于热桥问题处理不当就会其实际传热系数,使得通过幕墙的热损耗大大增加。判断隔热措施是否可靠主要是看固体的传热路径是否被有效隔断,这些路径包括:金属型材截面、金属连接件、螺钉等紧固件、中空玻璃边缘的间隔条等。型材截面的断热节点主要是通过采用隔热型材或隔热垫来实现。通过幕墙连接件、螺钉等紧固件的热桥则需要采用增加隔热垫或转换连接方式等办法来隔断固体的热传递途径。对于中空玻璃边缘间隔条的固体传热处理,可采用非铝合金材料的暖边间隔条来替代。
考虑好这四点让框架式玻璃幕墙设计更节能
密封性能也要好
玻璃幕墙气密性的好坏也会对节能效果产生较大的影响,通常在玻璃与型材之间、幕墙玻璃之间使用密封材料进行密封以提高其气密性。开启扇周边的位置是密闭效果较差的部位,通常在设计过程中应该重点考虑开启扇的密封效果。在开启扇的窗扇与窗框间增加密封胶条,窗框与横梁立柱间增加披水条及密封胶条以进行多道密封。
历时两年半的编制、修订、审批,上海耀皮玻璃集团股份有限公司(以下简称:耀皮玻璃)参编的上海市工程建设规范——《建筑幕墙工程技术标准》DG/TJ 08-56-2019,已于2020年4月1日起正式实施。
新标准由上海市金属结构行业协会主编,上海市住房和城市建设管理会批准,具有长三角地区幕墙行业技术发展的地方特征,聚焦建筑幕墙发展趋势和技术进步方向,开创性地引入了人造板材、复合板材、防火材料、保温隔热材料等新材料的设计技术标准;针对建筑幕墙设计中的痛点难点,尤其是幕墙的防渗漏设计,采光**、雨棚和金属屋面设计,全玻璃幕墙和双层幕墙设计等,通过科学研究和试验分析为条文的编制提供了技术支撑。
标准前瞻性地贴合建筑幕墙实践,引入地面粗糙度、双层幕墙隔声设计附录等,切实解决现有建筑幕墙设计和施工中的问题,开辟建筑幕墙工程设计标准新思路。
“永远有新的追求”耀皮玻璃一直致力于高性能、绿色节能、安全环保和可再生能源产品的研发和制造,特别是具有技术的各种低辐射镀膜玻璃、汽车玻璃和建筑节能中空玻璃,并为客户提供完善的玻璃一体化解决方案。
耀皮玻璃全程参与标准制订,特别是在“全玻璃幕墙设计规范”和“光伏幕墙”作为建筑幕墙主要材料玻璃供应商做出了主要贡献,成为主要的参与者和实践者。通过此项标准规范的编制,公司加强了与行业内外各界的交流与合作,以实际行动引导玻璃行业向高质量方向发展,扩大了公司影响力,提升了公司的企业形象及市场竞争力。
中空玻璃作为建筑外墙节能透明结构件在建筑中已被广泛采用,在其它行业如火车、飞机、制冷设备、温室大棚等行业也有很多的应用。由于生产环节对中空玻璃密封不够重视,较*造成中空玻璃密封失效而丧失中空玻璃的节能性能。
影响中空玻璃有效使用时间的直接原因是水分在中间层的汇聚速度。影响水分在中间层汇聚速度的因素较多,如材料的性能、制造工艺及控制、安装方法、环境老化等。中空玻璃的是指密封于空气层中的空气湿度达到饱和状态时的温度.低于该温度时空气层中的水蒸气就会凝结成液态或固态水。
水的含量越高,空气的温度也就越高。当玻璃内表面温度低于空气层内空气的时,中空腔空气中的水气就会在中空玻璃中空腔内聚集,导致上升。当环境温度降低,玻璃内表面的温度低于空气层时,空气层内的水气便在玻璃内表面产生结露或结霜(玻璃内表面温度**0℃时结露,低于0℃结霜)。由于玻璃内表面的结露或结霜,将会严重影响中空玻璃的度,并降低中空玻璃的隔热效果,同时长时间的结露会使玻璃的内表面发生霉变或返碱产生白斑,严重影响中空玻璃的使用。国家标准GBT 11944-2012《中空玻璃》规定温度为<-40℃中空玻璃上升,主要是由于外界的水分进入空气层而又不能燥剂吸收所造成的。下列三个原因可导致中空玻璃的上升:
(1)密封胶中存在的杂质或注胶过程中挤压不实而存在的毛细小孔,在空气层内外压差或浓度梯度的作用下,空氧中的水通过气体流通或扩散进入空气层中,使中空玻璃空气层中的水分含量增加。
(2)水气通过聚合物(丁基密封胶一般均为高分子聚合物)扩散进入空气层中。任何聚合物都不是不透气的,通常用于中空玻璃的密封胶有:丁基橡胶、聚硫橡胶、硅酮结构胶等也是如此。对于这些高分子材料,其两侧由于逸度差(压差或浓度差)的存在,构成了聚合物做等温扩散的驱动力。在逸度较高的一侧,聚合物分子因吸附气体分子(空气和水)进入固体聚合物中,移动并穿过聚合物链阵从聚合物的另一侧-—逸度较低的一侧释放出来。对于中空玻璃的密封胶而言,主要扩散物就是空气中的水分。
(3)干燥剂的有效吸附能力低。中空玻璃干燥剂的有效吸附能力,指的是干燥剂被密封于空气层之后所具有的吸附能力。它是干燥剂的性能、空气湿度、装填量以及在空气中放置时间等因素的函数。密封于中空玻璃空气层中的干燥剂其作用主要有两个,其一是吸附生产时密封于空气中的水分,使得中空玻璃有合格的初始;其二是不断地吸附从环境中通过密封胶渗透到中空层中的水分,保持中空玻璃始终有符合使用要求的。因此,要求干燥剂要有较强的吸附能力。如果干燥剂的吸附能力差,不能有效地吸附通过扩散进入空气层中的水分,就会导致水分在中空腔内聚集,水分压力升高,中空玻璃的上升。
提高中空玻璃使用寿命,延长有效使用时间使之达到标准要求,应从材料选择、加工制造、结构设计和安装等各个环节加以控制。
SGP胶片是胶片公司开发的离子型胶片, 是乙烯与甲基丙烯酸酯为主要成份的共聚物,含1%离子,胶片与玻璃的粘结力主要是离子键发挥作用,PVB胶片与玻璃的粘结是胶片中的COH基和玻璃中Si OH氢键相互形成粘结力。采用SGP胶片生产的玻璃夹层粘结强度比用PVB胶片生产玻璃高出许多、剪切模量更是提高了50倍、撕裂强度也能提高5倍。
虽然SGP胶片性能优越, 但我国无现行规范做依据, 对采用SGP胶片作为中间膜生产的夹层玻璃的应用产生局限性。如需采用, 只有通过SGP胶片夹层玻璃的等效强度计算,为实际工程中的应用提供理论数据支持,同时需经检测机构对幕墙防撞性能、幕墙抗风压性能、幕墙平面变形性能等检测均满足设计及相关规范要求后方可采用。
虽然目前无现行规范做依据, 但通过SGP胶片夹层玻璃的等效强度计算,为在实际工程中的应用提供的玻璃窗、幕墙,公建的玻璃屏障、门窗、阳台护栏、楼梯间玻璃栏板、隔断;较典型建筑有候机航站楼及车安全隔离大众的场所。如博物馆、银行、展览厅、办事大厅、珠宝店等需通透但在可能发生击、偷盗、了理论数据支持,同时经过各项检测均满足设计及相关规范要求, 采用SGP胶片夹层玻璃替代单片玻璃是可行的,也是较为经济的方案,可以广泛用于下述工程。
在易发生人身伤害的地方,如通道边、临街建筑站候客厅的玻璃屋顶、玻璃天井、倾斜安装的玻璃窗、幕墙,玻璃不会破碎造成伤害。
、防盗、防爆、放冰雹需求的建筑物,要求抢劫的场所用到的防层玻璃;爆炸、有毒的生产及试验场所,既要观察其反应情况、又要防止因爆炸、夹层玻璃所能承受较大荷载,并可满足透明观看要求:可用做深水窥视镜、海洋馆、潜艇观察窗等;在玻璃上印上图案做成高强度玻璃做有效果的地板。**高层的建筑物、公共建筑外立面安全玻璃。现有毒有害物品造成影响人身安全和健康,也需应用具有防爆功能的夹层玻璃。地板、玻璃走廊。SGP胶片代建筑高度越来越高、体量越来越大,**高层、**大建筑的外立面需要承受更大的风荷载、结构产生的体系应力、地震作用和温度变化带来的影响,要求玻璃有更高的承载能力和刚度要求,而且在高空中万一玻璃爆损还要有一定的剩余粘结力而不会造成坠落,采用SGP胶片生产的夹层玻璃非常适合用于**高建筑、**大建筑的外立面玻璃。**大规格建筑玻璃。追求建筑效果的现代建筑理念,越来越追求单片玻璃的大尺寸、大版面, 采用SGP胶片生产可**过10m以上长度的建筑玻璃或装饰玻璃柱,可以满足其安全性、视角效果的需要。
基于市场信息整理来看,从2020年四季度开始,确实已经有数条原产建筑玻璃的生产线转产光伏玻璃,以弥补光伏玻璃短期供不应求的缺口。
盛文宇表示,这其实是一个市场化自我调节的局面。从春节之后传统建筑玻璃与光伏玻璃价格变动的情况上来看,已经出现了方向相反的走势,建筑玻璃因产能转产而供应减少,价格大幅回升。光伏玻璃价格却出现了小幅下降。“未来具备转产条件的生产线预计依然会成为市场化调节的关键途径,成为调节光伏与建筑玻璃产能的桥梁。”
“对于我们来说,虽然都是玻璃,但光伏玻璃是另一个不同的产业,在生产、销售渠道、运营模式上都没有经验。而浮法玻璃作为我们的本业,在目前利润情况尚可的情况下不会轻易尝试转产。” 河北望美实业集团部负责人霍东凯告诉记者,浮法玻璃跟光伏玻璃应用领域上有差别,目前来看并不能形成有效的替代。“除非在光伏产能过剩之后大量转产浮法玻璃对浮法玻璃造成比较大的影响,会考虑其他的发展路径,否则,浮法玻璃依旧会沿着固有供需结构进行循环。”
对此,隆众资讯分析师苗云萍也表示,浮法玻璃和光伏玻璃的生产工艺是不同的,直接转换难度和成本都比较高。“在光伏玻璃十分紧缺的状况下,部分浮法玻璃产线可以生产2mm的玻璃代替一部分光伏背板,但不能代替面板,而且这样的浮法玻璃产线也十分有限。”
此外,也有玻璃企业反映说,光伏计划筹建中的产能已经很大了,有在抢跑,有在等命令,大家在等待国家政策明朗。在此基础上,浮法玻璃转产的可能不会很大。
事实上,玻璃企业转产还存在较高的行业壁垒等问题。
张凌璐表示,首先,光伏玻璃产线建设周期较长、初始投资额较高。尽管国家已明确光伏压延玻璃和汽车玻璃项目可不制定产能置换方案,但由于光伏玻璃原片窑炉建设周期在18个月以上,短期内原片窑炉产能仍无法实现大规模扩张。
其次,光伏玻璃生产的连续性很强,玻璃透光率、减反性能、强度性能等技术壁垒较高。这些技术壁垒在一定程度上也限制了光伏玻璃产线的快速扩张。
后,市场认定也需要比平板玻璃更长的周期。新建产能若非建立在原有的市场份额基础上,很难长久生存下去。
例如,转产光伏玻璃的生产线是否能够具有毗邻原料聚集地,是否能够得到具有竞争力的原料采购成本,是否拥有稳定的熔窑技术升级技术,是否拥有良好的运输通道作为依托从而降低运输成本等。这些因素可能导致转产企业成本大幅提升从而降低竞争力和存活率。
“只有在光伏玻璃价格利润明显**浮法玻璃的时段,部分浮法玻璃产线会从普通白玻转产**白玻璃应用于光伏电池背板。” 方正中期分析师魏朝明表示,在政策严控建筑玻璃产能而放开对光伏玻璃产能限制的当下,光伏玻璃相对建筑玻璃的**额利润是暂时的。浮法玻璃装置转产光伏玻璃将承担转换成本与市场风险,以及建筑玻璃利润**光伏玻璃时的不可转回风险,预计转换规模较为受限。